
J .  Fluid Mech. (1971), vol. 48, part 1, p p .  181-182 

Printed in Great Britain 
181 

A note on the role of the buoyancy layer in 
a rotating stratified fluid 
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In  the theory of steady stratified rotating fluid motions developed by Barcilon & 
Pedlosky (1967) (hereafter referred to as B & P) for flows within a circular, 
cylindrical container it was asserted that the innermost boundary layer on the 
vertical side wall was absent to lowest order when the side wall is thermally in- 
sulated. That is to say, the buoyancy layer is not required to close the vertical 
mass flux. This result has been disputed in a recent note by Harrington & 
Johnson (1969) (hereafter referred to as H & J). It is the purpose of this note to 
reiterate the earlier result of B & P and to show that H & J is in error. Further 
the result is placed on firmer ground by using the fundamental dynamical 
characteristics of the inviscid interior and viscous boundary layers and by 
avoiding the algebraic snares of manipulating Fourier series. 

It was shown in B & P (and using the notation introduced there) that for 
O(E3) < v,S < O(1) the region of flow outside the horizontal Ekman layers was 
divided into (i) a geostrophic and hydrostatic inviscid interior, (ii) a relatively 
thick viscous, hydrostatic boundary layer, in which, however, the azimuthal 
velocity is geostrophic, and (iii) a thin buoyancy layer in which the fluid motion 
is not in hydrostatic baIance. For O(E8) < CTS < O(E4) the hydrostatic layer 
consists of two parts, one with thickness scale E), the other with scale (OX)* while 
for O(Et )  < crS < 0 ( 1 )  it  has a single length scale (aS)*. 

For the purpose of this note it is not necessary to separate these two hydro- 
static components and they may be treated as a single layer (as was pointed out 
in $ 4  of B & P). 

Satisfying the boundary condition on the azimuthal velocity at the cylinder 

(1) 
wall ( r  = a) ,  yields v&, 2 )  + 8(a, z )  = 0, 

where vI is the interior velocity and a is the correction field contributed by the 
hydrostatic layer. It is important to note that the buoyancy layer plays no role 
in this matching. The condition that the side wall be insulated implies that 

aTI aP a!P 
-(a,z)+-(a,z)+-(a,z) = 0, 
ar ar ar 

where a ! P p  is the correction to the heat flux provided by the buoyancy layer. 
Since both vI and 8 are in geostrophic and hydrostatic balance the vertical 

aT, a? derivative of (1) yields 
- +- = 0, 
ar ar (3) 
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which with ( 2 )  implies that 
aF 
- (u,z) = 0. 
ar 

This result in conjunction with the condition of vanishing vertical velocity 
on r = a implies that the amplitude of the buoyancy layer is, to lowest order, 
zero. This may also be seen by direct calculation by multiplying the second equa- 
tion in H & J by sinmnz and integrating over the interval 0 6 z 6 l to yield 

for all m, where A is the amplitude of the vertical velocity in the buoyancy layer. 
The derivation presented here fails only a t  the two points x = 0 and z = 1 

where the Ekman compatibility condition requires that in the hydrostatic 
boundary layer (B & P) 

(6) = 1+1 
2 - 2 ’  i 

E3; i%? 
-as ar 

E4 83 
= & - 2 -  as az 

46 = +-- 

Unless (and it does not occur) 
Et  av, 

v, = +-4--, 2 = t+* ,  as a x  (7) 

the balance (3) wil l  not hold at the two end points and the resulting discrepancy 
will produce a contribution to the buoyancy layer a t  those two points only. 

The contribution is (as can be seen from the aforementioned equation of 
H & J )  I ( 8 )  

A(z)/23; = -++(a), z = 1, 

= &?I&), 2 = 0. 

This curious result merely states that the mass flux entering the side-wall 
boundary layer from the Ekman layer is initially partitioned between the 
hydrostatic and buoyancy layers but in a vertical distance much less than 
the vertical scale of the cylinder the entire vertical mass flux is contained in the 
hydrostatic layer, the buoyancy layer being absent for all z =k 0 or 1 by virtue 
of the insulating condition at  the side wall. The fact that A(x) is not zero at z = 0 , l  
is attributable to the discontinuous velocity boundary condition which occurs 
at the points where the rotating top and bottom adjoin the stationary side ~ d l .  
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